Prediksi Kuat Tekan Mortar Bata Ringan Dengan Metode Jaringan Saraf Tiruan
(1) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau. Pekanbaru, Riau, Indonesia
(2) Jurusan Teknik Sipil, Fakultas Teknik, Sekolah Tinggi Teknologi Pekanbaru. Pekanbaru, Riau, Indonesia
(3) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau. Pekanbaru, Riau, Indonesia
(4) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Riau. Pekanbaru, Riau, Indonesia
(*) Corresponding Author
DOI: https://doi.org/10.25077/jrs.19.1.22-31.2023
Copyright (c) 2023 Reni Suryanita, Harnedi Maizir, Satria Makahani, Dandio Ahmad Fansuri
Abstract
Keywords
Full Text:
PDFReferences
Absa, M. (2016). Prediction Of The Effect Of Compostion On Mechanical Properties Of Lightweight Brick Using Artificial Neural Network.
Amran, Y. H. M., Farzadnia, N., & Ali, A. A. A. (2015). Properties and applications of foamed concrete ; a review. CONSTRUCTION & BUILDING MATERIALS, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
Ashrafian, A., Shokri, F., Taheri Amiri, M. J., Yaseen, Z. M., & Rezaie-Balf, M. (2020). Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Construction and Building Materials, 230, 117048. https://doi.org/10.1016/j.conbuildmat.2019.117048
Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and Building Materials, 200, 637–647. https://doi.org/10.1016/j.conbuildmat.2018.12.136
Ly, H.-B., Nguyen, T.-A., Thi Mai, H.-V., & Tran, V. Q. (2021). Development of deep neural network model to predict the compressive strength of rubber concrete. Construction and Building Materials, 301, 124081. https://doi.org/10.1016/j.conbuildmat.2021.124081
Nagarajan, D., Rajagopal, T., & Meyappan, N. (2020). A Comparative Study on Prediction Models for Strength Properties of LWA Concrete Using Artificial Neural Network. Revista de La Construccion, 19(1), 103–111. https://doi.org/10.7764/RDLC.19.1.103-111
Paulson, A. J., Prabhavathy, R. A., Rekh, S., & Brindha, E. (2019). Application of neural network for prediction of compressive strength of silica fume concrete. International Journal of Civil Engineering and Technology, 10(2), 1859–1867.
VANLUCHENE, R. D., & SUN, R. (1990). Neural Networks in Structural Engineering. Computer‐Aided Civil and Infrastructure Engineering, 5(3), 207–215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x
Wiryawan, G. P., Detak, D., Pratama, Y., Fisika, J. T., Teknologi, F., & Nopember, S. (n.d.). Prediksi Sifat Termal Bata Ringan Berdasarkan Variasi Suhu Menggunakan Jaringan Syaraf Tiruan. 1–6.
Zhao J., Iven J., DeWolf J., 1998, Structural Damage Detection Using Artificial Neural Networks, Retrieved From : http://doi.org/10.1109/CIMSA.20 12.6269593.
Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats