Studi Awal Pengaruh Perubahan Iklim Terhadap Perkerasan Kaku Di Atas Tanah Lempung Ekspansif

Iman Haryanto(1*), Heru Budi Utomo(2)

(1) Teknik Sipil, Sekolah Vokasi, Universitas Gajah Mada. Yogyakarta, Indonesia
(2) Teknik Sipil, Sekolah Vokasi, Universitas Gajah Mada. Yogyakarta, Indonesia
(*) Corresponding Author

DOI: https://doi.org/10.25077/jrs.18.3.165-177.2022

Copyright (c) 2022 Iman Haryanto, Heru Budi Utomo

Abstract


Perubahan iklim berpotensi merusak infrastruktur termasuk struktur perkerasan kaku. Perkerasan yang dibangun pada tanah dasar tanah eskpansif rentan terhadap kerusakan, termasuk pumping. Penelitian ini bertujuan menganalisis potensi dampak perubahan iklim terhadap struktur perkerasan kaku. Data suhu udara dan curah hujan tahunan rerata di Provinsi Daerah Istimewa Yogyakarta adalah 26,71C dan 200,13 mm. Proyeksi perubahan iklim Bank Dunia menyebutkan bahwa pada periode 2080-an suhu udara meningkat 0,3C per dekade dan curah hujan tahunan rerata menurun 15%. Metode yang digunakan adalah Thornthwaite Moisture Index (TMI) (sebagai indikator penciri iklim) dan metode empiris untuk menghitung jumlah kerusakan level 3 (parah) akibat pumping. Lima tipe perkerasan kaku yang terdapat dalam Manual Desain Perkerasan (MDP) 2017 dipelajari sebagai obyek studi. Beberapa hasil studi adalah sebagai berikut. Perubahan TMI pada tahun 1976, 2016, 2019, dan 2080-an adalah 36,8; 48,07; 6,71; dan 57,54. Pumping index sebesar = 134 in3 per in length dapat menghasilkan variasi void depths > 5 cm, sehingga perkerasan kaku dapat mengalami kehilangan dukungan (loss of support). Perubahan iklim meningkatkan pumping perkerasan kaku tanpa tulangan antara 1832%. Lima tipe perkerasan kaku yang terdapat MDP 2017 memiliki pumping index kurang dari 134 in3 per in length, sehingga perubahan iklim diperkirakan tidak mengakibatkan tipikal perkerasan kaku standar di Indonesia mengalami kehilangan dukungan (loss of support). Perkerasan kaku tanpa tulangan terindikasi lebih mudah mengalami pumping erosion akibat perubahan iklim daripada perkerasan kaku dengan tulangan

Keywords


perubahan iklim; Thornthwaite Moisture Index; perkerasan kaku; lempung ekspansif; pumping index

Full Text:

PDF

References


Bhatti, M. A., Barlow, J. A., & Stoner, J. W. (1996). Modeling damage to rigid pavements caused by subgrade pumping. Journal of Transportation Engineering, 122(1), 12–21. https://doi.org/10.1061/(ASCE)0733-947X(1996)122:1(12)

Case, M., Ardiansyah, F., & Spector, E. (2007). Climate Change in Indonesia Implications for Humans and Nature. Energy, 1–13.

Christodoulias, J. (2015). Engineering Properties and Shrinkage Limit of Swelling Soils in Greece. Journal of Earth Science & Climatic Change, 06(05), 6–11. https://doi.org/10.4172/2157-7617.1000279

Darter, M.I., Hall, K.T., Kuo, C. M. (1995). Support Under Portland Cement Concrete Pavements is. National Academy Press.

Direktorat Jenderal Bina Marga. (2011). PANDUAN PEMILIHAN TEKNOLOGI PEMELIHARAAN PREVENTIF PERKERASAN JALAN.

Direktorat Jenderal Bina Marga. (2017). Manual Desain Perkerasan Jalan. 239.

Direktorat Jenderal Bina Marga. (2020). Suplemen Manual Desain Perkerasan Jalan 2017.

Giovanni, S., Mochtar, I. B., & Endah, N. (2018). Usulan Penyelesaian Masalah Rekayasa Tanah untuk Jalan dan Gedung di Atas Tanah Ekspansif Studi Kasus Surabaya Barat. In Jurnal Teknik ITS (Vol. 7, Issue 1). https://doi.org/10.12962/j23373539.v7i1.28980

Highway Research Board. (1962). The AASHO Road Test Report 5 Pavement Research, Special Report 61 E.

Hong, G. T., Bulut, R., Aubeny, C. P., Jayatilaka, R., & Lytton, R. L. (2006). Design model for roughness and serviceability of pavements on expansive soils. Transportation Research Record, 1967, 103–111. https://doi.org/10.1177/0361198106196700111

Huizinga, J., de Moel, H., & Szewczyk, W. (2017). Global flood depth-damage functions. In Joint Research Centre (JRC). https://doi.org/10.2760/16510

Jung, Y. su, Zollinger, D. G., Won, M., & ... (2009). Subbase and subgrade performance investigation for concrete pavement. In … Rep. No. FHWA/TX-09/0 ….

Kovacs, A., & Morey, R. M. (1983). DETECTION OF CAVITIES UNDER CONCRETE PAVEMENT. CRREL Report (US Army Cold Regions Research and Engineering Laboratory), 25.

Kyuma, K. (1971). Climate of South and Southeast Asia according to Thornthwaite’s Classification Scheme. The Southeast Asian Studies, 9(1), 136–158.

Liu, B., Zhou, Y., Gu, L., & Huang, X. (2020). Finite element simulation and multi-factor stress prediction model for cement concrete pavement considering void under slab. Materials, 13(22), 7. https://doi.org/10.3390/ma13225294

Muntohar, A. S. (2006). THE SWELLING OF EXPANSIVE SUBGRADE AT WATES-PURWOREJO ROADWAY STA. 8 127. Civil Engineering Dimension, 8(2), 106–110.

Philp, M., & Taylor, M. (2012). Beyond Agriculture: Exploring the application of the Thornthwaite Moisture Index to infrastructure and possibilities for climate change adaptation infrastructure and possibilities for climate change adaptation. October, 21.

Roesler. J.R., Hiller, J.E., Brand, A. S. (2016). Continuously Reinforced Concrete Pavement Manual Guidelines for Design, Construction, Maintenance, and Rehabilitation. Federal Highway Administration.

Suherman. (2005). Potensi Sifat Ekspansif Tanah Kelempungan. Jurnal Jalan Dan Jembatan, 7.

The World Bank Group. (2011). Vulnerability, Risk Reduction, adn Adaptation to Climate Change.

van de Lindt, J. W., & Taggart, M. (2009). Fragility Analysis Methodology for Performance-Based Analysis of Wood-Frame Buildings for Flood. Natural Hazards Review, 10(3), 113–123. https://doi.org/10.1061/(asce)1527-6988(2009)10:3(113)

Wen, L., Zhu, G. X., & Baozhu. (2017). Cause Analysis on the Void under Slabs of Cement Concrete Pavement. IOP Conference Series: Materials Science and Engineering, 205(1). https://doi.org/10.1088/1757-899X/205/1/012011

Xie, J., Niu, F., Su, W., Huang, Y., & Liu, G. (2021). Identifying airport runway pavement diseases using complex signal analysis in GPR post-processing. Journal of Applied Geophysics, 192, 3. https://doi.org/10.1016/j.jappgeo.2021.104396

Zeng, S., & Xu, J. (2009). Voids classification standard for cement concrete pavement slabs based on service life. Proceedings of the 9th International Conference of Chinese Transportation Professionals, ICCTP 2009: Critical Issues in Transportation System Planning, Development, and Management, 358, 569–574. https://doi.org/10.1061/41064(358)80

Zhang, Tao; Ren, Y. (2019). Identification and detection of a void under highway cement concrete pavement slabs based on finite element analysis. The Mining-Geology-Petroleum Engineering Bulletin, 44. https://doi.org/10.17794/rgn.2019.1.5




Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats