Performa Beton Dengan Ground Granulated Blast Furnace Slag Terhadap Sulfate Attack
(1) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Malang, Malang.
(2) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Malang, Malang.
(3) Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Malang, Malang.
(*) Corresponding Author
DOI: https://doi.org/10.25077/jrs.16.3.185-193.2020
Copyright (c) 2020 Rizki Amalia Tri Cahyani, Ernawan Setyono, Yunan Rusdianto
Abstract
Serangan sulfat (sulfate attack) termasuk hal yang umum terjadi pada struktur beton, mengingat ion sulfat banyak dijumpai pada tanah, air tanah dan air laut. Peningkatan ketahanan beton melawan sulfat akan berdampak besar pada durabilitas dan umur layan struktur beton. Penambahan supplementary cementitious materials seperti GGBFS (ground granulated blast furnace slag) ke campuran beton telah terbukti memberikan pengaruh positif terhadap durabilitas dan properti mekanis beton. Namun, GGBFS tergolong material yang baru dikembangkan di Indonesia dan potensinya dalam meningkatkan durabilitas beton belum dimanfaatkan secara luas. Berdasarkan hal tersebut, perlu dilakukan investigasi terkait aplikasi GGBFS dan pengaruhnya terhadap durabilitas beton, terutama dalam melawan serangan sulfat. Dalam studi ini, durabilitas beton dengan persentase penggantian GGBFS 30%, 50% dan 70% terhadap total volume binder dievaluasi menggunakan perlakuan siklus basah-kering dalam larutan magnesium sulfat. Tingkat degradasi beton diukur dengan melakukan observasi terhadap perubahan kuat tekan dan massa spesimen akibat serangan sulfat. Hasil penelitian menunjukkan bahwa penggantian GGBFS hingga 50% dari total volume binder dapat meningkatkan ketahanan beton terhadap serangan sulfat, ditunjukkan dengan kehilangan massa dan reduksi kekuatan yang lebih rendah dibandingkan spesimen kontrol dengan 100% semen Portland.
Keywords
Full Text:
PDFReferences
Allahvedi, A. and Hashemi, H. (2015) ‘Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack’, International Journal of Civil Engineering, 13(4A), pp. 379–387. doi: 10.22068/IJCE.13.4.379.
Atahan, H. N. and Arslan, K. M. (2016) ‘Improved durability of cement mortars exposed to external sulfate attack: The role of nano & micro additives’, Sustainable Cities and Society, 22, pp. 40–48. doi: 10.1016/j.scs.2016.01.008.
Attari, A., McNally, C. and Richardson, M. G. (2016) ‘A combined SEM - Calorimetric approach for assessing hydration and porosity development in GGBS concrete’, Cement and Concrete Composites, 68, pp. 46–56. doi: 10.1016/j.cemconcomp.2016.02.001.
Bai, J. (2016) ‘Durability of sustainable construction materials’, in Sustainability of Construction Materials. Elsevier, pp. 397–414. doi: 10.1016/B978-0-08-100370-1.00016-0.
Bhatty, J. I. and Taylor, P. C. (2006) ‘Sulfate Resistance of Concrete Using Blended Cements or Supplementary Cementitious Materials’, Portland Cement Association, (2916), pp. 1–21.
Cahyani, R. A. T. and Rusdianto, Y. (2020) ‘Concrete Performance with Ground Granulated Blast Furnace Slag as Supplementary Cementitious Materials’, IOP Conference Series: Materials Science and Engineering, 771(1). doi: 10.1088/1757-899X/771/1/012062.
Han, C. et al. (2018) ‘Behavior of high performance concrete pastes with different mineral admixtures in simulated seawater environment’, Construction and Building Materials, 187, pp. 426–438. doi: 10.1016/j.conbuildmat.2018.07.196.
Liang, C. et al. (2018) ‘Prediction of Compressive Strength of Concrete in Wet-Dry Environment by BP Artificial Neural Networks’, Advances in Materials Science and Engineering, 2018. doi: 10.1155/2018/6204942.
López, M. M., Pineda, Y. and Gutiérrez, O. (2015) ‘Evaluation of Durability and Mechanical Properties of the Cement Mortar Added with Slag Blast Furnace’, Procedia Materials Science, 9, pp. 367–376. doi: 10.1016/j.mspro.2015.05.006.
Ming, F., Deng, Y. S. and Li, D. Q. (2016) ‘Mechanical and Durability Evaluation of Concrete with Sulfate Solution Corrosion’, Advances in Materials Science and Engineering, 2016. doi: 10.1155/2016/6523878.
O’Connell, M., McNally, C. and Richardson, M. G. (2012) ‘Performance of concrete incorporating GGBS in aggressive wastewater environments’, Construction and Building Materials, 27(1), pp. 368–374. doi: 10.1016/j.conbuildmat.2011.07.036.
Oner, A. and Akyuz, S. (2007) ‘An experimental study on optimum usage of GGBS for the compressive strength of concrete’, Cement and Concrete Composites, 29(6), pp. 505–514. doi: 10.1016/j.cemconcomp.2007.01.001.
Panesar, D. K. (2019) ‘Supplementary cementing materials’, in Developments in the Formulation and Reinforcement of Concrete. Elsevier, pp. 55–85. doi: 10.1016/B978-0-08-102616-8.00003-4.
Raman, J. V. M. and Krishnan, V. M. (2017) ‘Partial Replacement of Cement with GGBS in Self Compacting Concrete for Sustainable Construction’, International Journal of Civil Engineering, 4(3), pp. 24–28. doi: 10.14445/23488352/ijce-v4i3p106.
Rozière, E. et al. (2009) ‘Durability of concrete exposed to leaching and external sulphate attacks’, Cement and Concrete Research, 39(12), pp. 1188–1198. doi: 10.1016/j.cemconres.2009.07.021.
Tian, W. and Han, N. (2017) ‘Experiment Analysis of Concrete’s Mechanical Property Deterioration Suffered Sulfate Attack and Drying-Wetting Cycles’, Advances in Materials Science and Engineering, 2017. doi: 10.1155/2017/5673985.
Vedalakshmi, R. et al. (2005) ‘Effect of magnesium and sulphate ions on the sulphate resistance of blended cements in low- and medium-strength concretes’, Advances in Cement Research, 17(2), pp. 47–55. doi: 10.1680/adcr.2005.17.2.47.
Whittaker, M. and Black, L. (2015) ‘Current knowledge of external sulfate attack’, Advances in Cement Research, 27(9), pp. 532–545. doi: 10.1680/adcr.14.00089.
Zuquan, J. et al. (2018) ‘Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones’, Construction and Building Materials, 177, pp. 170–183. doi: 10.1016/j.conbuildmat.2018.05.120.
Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats