Perbandingan Analisis Kapasitas Lentur Balok Beton Bertulang Berdasarkan Beberapa Peraturan di Dunia

Leonardus Setia Budi Wibowo(1*), Agustinus Angkoso(2)

(1) Teknik Sipil, Fakultas Teknik, Universitas Widya Kartika, Surabaya, Jawa Timur
(2) Teknik Sipil, Fakultas Teknik, Universitas Widya Kartika, Surabaya, Jawa Timur
(*) Corresponding Author

DOI: https://doi.org/10.25077/jrs.16.3.205-216.2020

Copyright (c) 2020 Leonardus Setia Budi Wibowo, Agustinus Angkoso

Abstract


Pemanfaatan material beton bertulang semakin meningkat, terutama pada struktur bangunan baik bangunan rendah maupun bangunan tinggi. Salah satu kunci dalam suatu struktur adalah perhitungan nilai kapasitas lentur pada elemen balok beton bertulang. Dalam suatu analisis prediksi nilai kapasitas lentur, nilai koefisien pada diagram blok tegangan dan regangan ultimit beton memiliki peranan yang sangat penting. Pada peraturan ACI 318, nilai koefisien tersebut dikembangkan berdasarkan hasil eksperimen pada kolom yang menggunakan beton mutu normal, namun dalam pelaksanaannya hingga saat ini, nilai koefisien tersebut digunakan juga untuk perhitungan pada struktur yang menggunakan beton mutu tinggi. Terdapat beberapa macam peraturan serta laporan ilmiah di dunia dengan nilai koefisien yang berbeda-beda, sehingga mengakibatkan prediksi nilai kapasitas lentur yang berbeda pula. Pada penelitian ini dilakukan analisis prediksi nilai kapasitas lentur balok beton bertulang menggunakan beberapa peraturan yang berlaku di beberapa negara antara lain ACI 318, AS3600, CAN-A23.3, CEB-FIP Model Code, JSCE dan NZS 3101 serta laporan ilmiah ACI ITG-4, dan dari hasil prediksi tersebut dibandingkan dengan nilai kapasitas lentur yang didapatkan dari uji eksperimental. Total terdapat 58 benda uji balok beton bertulang, dengan rincian 35 benda uji yang menggunakan beton mutu normal dibawah 55 MPa dan 23 benda uji yang menggunakan beton mutu tinggi diatas 55 MPa yang diuji dengan beban monotonik. Hasil dari penelitian menunjukkan bahawa peraturan CEB-FIP Model Code memberikan prediksi terbaik untuk beton mutu normal dengan nilai rasio Vexp/Vmn sebesar 1,085 sedangkan untuk beton mutu tinggi, peraturan ACI 318 memberikan prediksi terbaik dengan nilai rasio Vexp/Vmn sebesar 1,124.


Keywords


balok; beton bertulang; mutu beton; peraturan; lentur

Full Text:

PDF

References


ACI 318. (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary. In American Concrete Institute.

ACI 318. (2014). Building Code Requirement for Structural Concrete (ACI 318-14) and Commentary. American Concrete Institute.

ACI ITG-4.3. (2008). Report on Structural Design and Detailing for High-Strength Concrete in Moderate to High Seismic Applications (ACI ITG-4.3 R-07). American Concrete Institute.

Al-Kamal, M. K. (2019). Nominal Flexural Strength of High-Strength Concrete Beams. Advances in Concrete Construction, 7(1), 1–9. https://doi.org/10.12989/acc.2019.7.1.001

AS3600. (2001). Australian Standard for Concrete Structures. Standards Australia Committe.

Bonacci, J. F., & Maalej, M. (2000). Externally Bonded Fiber-Reinforced Polymer for Rehabilitation of Corrosion Damaged Concrete Beams. ACI Structural Journal, 97(5), 703–711. https://doi.org/10.14359/8805

CEB-FIP. (1993). CEB/FIP Model Code 1990 : Design Code. In fib Bulletin.

CEB-FIP. (2010). Fib Model Code for Concrete Structures. In fib Bulletin.

CSA-A23.3. (2004). Design of concrete structures. In Canadian Standards Association. https://doi.org/10.1201/9781315368221-12

CTUBH. (2020). The Council on Tall Buildings and Urban Habitat (CTBUH)’s global study of 200‑meter‑and‑taller building completions for 2020. Completions by Material. Council on Tall Buildings and Urban Habitat (CTBUH).

Giduquio, M. B., Cheng, M. Y., & Wibowo, L. S. B. (2015). High-Strength Flexural Reinforcement in Reinforced Concrete Flexural Members under Monotonic Loading. ACI Structural Journal, 112(6), 793–804. https://doi.org/10.14359/51688057

Grace, N. F., Abdel-Sayed, G., & Ragheb, W. F. (2002). Strengthening of Reinforced Concrete Beams using Innovative Ductile Composite Fiber-Reinforced Polymer Systems. ACI Structural Journal, 99(5), 692–700.

Greene, C. E., & Myers, J. J. (2013). Flexural and Shear Behavior of Reinforced Concrete Members Strengthened with a Discrete Fiber-Reinforced Polyurea System. Journal of Composites for Construction, 17(1), 108–116. https://doi.org/10.1061/(asce)cc.1943-5614.0000308

Hadi, M. N. S., Sarhan, M. M., & Teh, L. H. (2018). Behavior of Concrete Beams Reinforced with Steel Plates. ACI Structural Journal, 115(5), 1307–1315. https://doi.org/10.14359/51702445

Han, S.-J., Jang, S.-J., Kang, S.-W., & Yun, H.-D. (2012). Flexural Performance and Cracking Behavior of Expansive SHCC Beams. 15WCEE, 25021–25025.

Hashemi, S. H., Rahgozar, R., & Maghsoudi, A. A. (2009). Flexural Testing of high Strength Reinforced Concrete Beams Strengthened with CFRP Sheets. IJE Transactions B: Applications, 22(2), 131–146.

Heffernan, P. J., & Erki, M. A. (2004). Fatigue behavior of reinforced concrete beams strengthened with prestressed fiber reinforced polymer. Journal of Composites for Construction, 8(2), 132–140. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(132)

Hong, K. N., Han, J. W., Seo, D. W., & Han, S. H. (2011). Flexural Response of Reinforced Concrete Members Strengthened with Near-Surfaced-Mounted CFRP Strips. International Journal of Physical Sciences, 6(5), 948–961. https://doi.org/10.5897/IJPS10.222

Hong, K. N., Lee, B. H., Kim, J. H., Jang, I. Y., & Han, S. H. (2011). Flexural behavior of RC beams strengthened with Composite Beam. International Journal of Physical Sciences, 6(9), 2205–2218. https://doi.org/10.5897/IJPS11.305

Jang, I.-Y., Park, H.-G., Kim, S.-S., Kim, J.-H., & Kim, Y.-G. (2008). On the Ductility of High-Strength Concrete Beams. International Journal of Concrete Structures and Materials, 2(2), 115–122. https://doi.org/10.4334/ijcsm.2008.2.2.115

JSCE. (2010). Standard Specifications for Concrete Structures-2007 Design. In Japan Society of Civil Engineers. https://doi.org/10.3151/coj1975.46.7_3

Jung, W. T., Park, Y. H., Park, J. S., Kang, J. Y., & You, Y. J. (2005). Experimental Investigation on Flexural Behavior of RC Beams Strengthened by NSM CFRP Reinforcements. Proceedings of the 7th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-7), New Orleans, SP-230-46, 795–806.

Kang, T. H. K., Kim, W., Kwak, Y. K., & Hong, S. G. (2014). Flexural Testing of Reinforced Concrete Beams with Recycled Concrete Aggregates. ACI Structural Journal, 112(2), 239–240.

Kassem, C., Farghaly, A. S., & Benmokrane, B. (2011). Evaluation of Flexural Behavior and Serviceability Performance of Concrete Beams Reinforced with FRP Bars. Journal of Composites for Construction, 15(5), 682–695. https://doi.org/10.1061/(asce)cc.1943-5614.0000216

Khan, A. R., & Naseem, N. (2008). Role of U-shaped Anchorages on Performance of RC Beams Strengthened by CFRP Plates. Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), 1–6. https://doi.org/10.1201/9781439828403.ch176

Kim, H. S., & Shin, Y. S. (2011). Flexural Behavior of Reinforced Concrete (RC) Beams Retrofitted with Hybrid Fiber Reinforced Polymers (FRPs) under Sustaining Loads. Composite Structures, 93(2), 802–811. https://doi.org/10.1016/j.compstruct.2010.07.013

Kim, S.-W., Lee, Y.-H., & Kim, K.-H. (2012). Flexural Behavior of Reinforced Concrete Beams with Electric Arc Furnace Slag Aggregates. Journal of the Korea Concrete Institute, 11(1), 133–138. https://doi.org/10.4334/jkci.2012.24.3.267

Kim, S.-W., Lee, Y.-J., Lee, Y.-H., & Kim, K.-H. (2016). Flexural Performance of Reinforced High-Strength Concrete Beams with EAF Oxidizing Slag Aggregates. Journal of Asian Architecture and Building Engineering, 15(3), 589–596. https://doi.org/10.3130/jaabe.15.589

Li, L. Z., Jiang, C. J., Yu, J. T., Wang, X., & Lu, Z. D. (2019). Flexural Performance of Fire-Damaged Reinforced Concrete Beams Repaired by Bolted Side-Plating. ACI Structural Journal, 116(3), 183–193. https://doi.org/10.14359/51713319

Li, L. Z., Liu, X., Luo, Y., Su, M. N., & Zhu, J. H. (2019). Flexural Performance of Bolted-Side-Plated Reinforced Concrete Beams with Buckling Restraining. ACI Structural Journal, 116(2), 77–87. https://doi.org/10.14359/51712277

Metwally, I. M. (2011). Can Different Design Codes give the Accurate Prediction of Moment Capacities of High-Strength Concrete Members? International Conference on Sustainable Design and Construction (ICSDC), 497–506.

Nordin, H., & Täljsten, B. (2006). Concrete Beams Strengthened with Prestressed Near Surface Mounted CFRP. Journal of Composites for Construction, 10(1), 60–68.

NZS3101. (2006). Concrete structures standard. Part 1: The design of concrete structures. In New Zeland Standards Executive (Vol. 1).

Rashid, M. A., & Mansur, M. A. (2005). Reinforced High-Strength Concrete Beams in Flexure. ACI Structural Journal, 102(3), 462–471. https://doi.org/10.14359/14418

Shin, Y.-S., & Lee, C. (2003). Flexural Behavior of Reinforced Concrete Beams Strengthened with Carbon Fiber-Reinforced Polymer Laminates at Different Levels of Sustaining Load. ACI Structural Journal, 100(2), 231–239.

SNI 2847. (2013). Persyaratan Beton Struktural untuk Bangunan Gedung. In Badan Standardisasi Indonesia.

Svecova, D., & Razaqpur, A. G. (2000). Flexural Behavior of Concrete Beams Reinforced with Carbon Fiber-Reinforced Polymer (CFRP) Prestressed Prisms. ACI Structural Journal, 97(5), 731–738. https://doi.org/10.14359/8808

Täljsten, B. (2001). CFRP-Strengthening - Concrete Structures Strenghened with Near Surface Mounted CFRP Laminates. Fibre Reinforced Plastics for Reinforced Concrete Structures, FRP RCS-5 Conference, 12.

Whitney, C. S. (1937). Design of Reinforced Concrete Members Under Flexure or Combined Flexure and Direct Compression. Proceedings of The American Concrete Institute, 33(3), 483–498. https://doi.org/10.14359/8429

Wight, R. G., Green, M. F., & Erki, M.-A. (2001). Prestressed FRP Sheets for Poststrengthening Reinforced Concrete Beams. Journal of Composites for Construction, 5(4), 214–220.

Yotakhong, P. (2003). Flexural Performance of MMFX Reinforcing Rebars in Concrete Structures. North Carolina State University, Raleigh, NC.




Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats