Properties of Calcined Oebelo Red Soil Modified Fly Ash based Geopolymer

Andrie Harmaji(1*), Partogi Hasudungan Simatupang(2), Ruslan Ramang(3), Ari Esclesias Sinaga(4)

(1) Département des sciences appliquées, Université du Québec à Chicoutimi
(2) Civil Engineering Department, Universitas Nusa Cendana, Kupang, Indonesia
(3) Civil Engineering Department, Universitas Nusa Cendana, Kupang, Indonesia
(4) Civil Engineering Department, Universitas Nusa Cendana, Kupang, Indonesia
(*) Corresponding Author

DOI: https://doi.org/10.25077/jrs.18.3.222-229.2022

Copyright (c) 2022 Andrie Harmaji, Partogi H. Simatupang, Ruslan Ramang, Ari Esclesias Sinaga

Abstract


Research on fly ash has developed rapidly in recent years, one of which is its use as an environmentally friendly geopolymer concrete material. This research study the effect of calcination temperature and duration of red soil to compressive strength and setting time of fly ash based geopolymer paste. The red soil calcination process was carried out with variations in temperature of 400°C, 600°C, and 800°C for 4 and 8 hours of calcination. The activator solution was prepared by mixing a solution of NaOH with a solution of Na2SiO3 with a 1:1 composition. Sample treatment was carried out in 2 types, with ambient curing type and dry curing type. From the results of this study, the fastest setting time and maximum compressive strength of geopolymer paste of 23.14 MPa achieved at 800°C red soil calcination at 8 hours, and dry curing.

Keywords


oebelo red soil; calcination; geopolymer; setting time; compressive strength

Full Text:

PDF

References


Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1, 100004. https://doi.org/10.1016/j.envc.2020.100004

Amran, M., Al-Fakih, A., Chu, S. H., Fediuk, R., Haruna, S., Azevedo, A., & Vatin, N. (2021). Long-term durability properties of geopolymer concrete: An in-depth review. Case Studies in Construction Materials, 15, e00661. https://doi.org/10.1016/j.cscm.2021.e00661

Aranyasen, S., Srinavin, K., Aksorn, P., & Kusonkhum, W. (2021). View of Comparison of Carbon Dioxide Emissions (CO2-e) Produced Between Ordinary Concrete Production and Geopolymer Concrete for Environmentally Friendly Construction Industry by Using Life Cycle Assessment Methods. KKU Research Journal. 24(1)

Bella, R. A., Bunganaen, W., & Sogen, P. M. (2015). IDENTIFIKASI KERUSAKAN KONSTRUKSI AKIBAT POTENSI PENGEMBANGAN TANAH LEMPUNG EKSPANSIF DI DESA OEBELO. Jurnal Teknik Sipil, 4(2), 195–208. https://doi.org/10.35508/JTS.4.2.195-208

Frigione, M. (2018). Durability problems of concrete structures rehabilitated with FRP. In Eco-efficient Repair and Rehabilitation of Concrete Infrastructures (pp. 147–170). Elsevier Inc. https://doi.org/10.1016/B978-0-08-102181-1.00007-1

Gardner, D., Lark, R., Jefferson, T., & Davies, R. (2018). A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Studies in Construction Materials, 8, 238–247. https://doi.org/10.1016/j.cscm.2018.02.002

Gomes, K. C., Carvalho, M., Diniz, D. de P., Abrantes, R. de C. C., Branco, M. A., & Carvalho Junior, P. R. O. de. (2019). Carbon emissions associated with two types of foundations: CP-II Portland cement-based composite vs. geopolymer concrete. Matéria (Rio de Janeiro), 24(4). https://doi.org/10.1590/s1517-707620190004.0850

Hanein, T., Thienel, K. C., Zunino, F., Marsh, A. T. M., Maier, M., Wang, B., Canut, M., Juenger, M. C. G., ben Haha, M., Avet, F., Parashar, A., Al-Jaberi, L. A., Almenares-Reyes, R. S., Alujas-Diaz, A., Scrivener, K. L., Bernal, S. A., Provis, J. L., Sui, T., Bishnoi, S., & Martirena-Hernández, F. (2022). Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. In Materials and Structures/Materiaux et Constructions (Vol. 55, Issue 1, pp. 1–29). Springer Science and Business Media B.V. https://doi.org/10.1617/s11527-021-01807-6

Harmaji, A., & Zuraida, S. (2019). Green Construction Material: Polyethylene Waste Reinforce Concrete for Panel Application. International Journal of Built Environment and Scientific Research, 3(1), 1. https://doi.org/10.24853/ijbesr.3.1.1-6

Harmaji, A. (2019). Pengaruh Penambahan Corn Cob Ash dan Bagasse Ash terhadap Setting Time dan Kuat Tekan Material Berbasis Semen. JOURNAL OF APPLIED SCIENCE (JAPPS), 1(1), 001–006. https://doi.org/10.36870/japps.v1i1.1

Harmaji, A., & Sunendar, B. (2016). Utilization of fly ash, red mud, and electric arc furnace dust slag for geopolymer. In Materials Science Forum (Vol. 841). https://doi.org/10.4028/www.scientific.net/MSF.841.157

Kaczyńska, K., Kaczyński, K., & Pełka, P. (2021). Calcination of clay raw materials in a fluidized bed. Materials, 14(14). https://doi.org/10.3390/ma14143989

Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. M. (2020). Advances in alkali-activation of clay minerals. In Cement and Concrete Research (Vol. 132, p. 106050). Elsevier Ltd. https://doi.org/10.1016/j.cemconres.2020.106050

Khater, H. M., & el Naggar, A. (2020). Combination between organic polymer and geopolymer for production of eco-friendly metakaolin composite. Journal of the Australian Ceramic Society, 56(2), 599–608. https://doi.org/10.1007/s41779-019-00371-1

Kotop, M. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., & Binyahya, A. S. (2021). Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Engineering Journal, 12(4), 3641–3647. https://doi.org/10.1016/j.asej.2021.04.022

Latawiec, R., Woyciechowski, P., & Kowalski, K. (2018). Sustainable Concrete Performance—CO2-Emission. Environments, 5(2), 27. https://doi.org/10.3390/environments5020027

Mohammed, A. A., Ahmed, H. U., & Mosavi, A. (2021). Survey of Mechanical Properties of Geopolymer Concrete: A Comprehensive Review and Data Analysis. Materials, 14(16), 4690. https://doi.org/10.3390/ma14164690

Muhammad, N., Baharom, S., Ghazali, N. A. M., & Alias, N. A. (2019). Effect of Heat Curing Temperatures on Fly Ash-Based Geopolymer Concrete. International Journal of Engineering & Technology, 8(1.2), 15–19. https://doi.org/10.14419/IJET.V8I1.2.24866

Neupane, K. (2018). High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials, 7(2), 15. https://doi.org/10.11648/j.am.20180702.11

Poudyal, L., & Adhikari, K. (2021). Environmental sustainability in cement industry: An integrated approach for green and economical cement production. In Resources, Environment and Sustainability (Vol. 4, p. 100024). Elsevier B.V. https://doi.org/10.1016/j.resenv.2021.100024

Reeb, C., Pierlot, C., Davy, C., & Lambertin, D. (2021). Incorporation of organic liquids into geopolymer materials - A review of processing, properties and applications. In Ceramics International (Vol. 47, Issue 6, pp. 7369–7385). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2020.11.239

Simatupang, P.H., Harmaji, A., Anggraini, A.N., Pane, I., Sunendar, B., & Imran I. (2015). Utilization of industrial waste in indonesiaas filler for low and high calcium fly ash based geopolymer. Surabaya: The 2nd International Conference on Material and Metallurgical Technology 2015 (ICOMMET 2015).

Singh, N. (2018). Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals, 8(7), 299. https://doi.org/10.3390/min8070299

Yadav, M. (2021). FLY ASH BASED GEOPOLYMER BINDERS: A SUSTAINABLE AND GREEN CEMENT. SPAST Abstracts, 1(01).

Zailan, S. N., Mahmed, N., Abdullah, M. M. A. B., Rahim, S. Z. A., Halin, D. S. C., Sandu, A. V., Vizureanu, P., & Yahya, Z. (2022). Potential Applications of Geopolymer Cement-Based Composite as Self-Cleaning Coating: A Review. Coatings, 12(2), 133. https://doi.org/10.3390/coatings12020133

Zuraida, S., Primasetra, A., Margono, R. B., & Harmaji, A. (2020). The application of plastic composite panel for prefabricated low costs housing in Indonesia: A green construction design proposal,” J. Asian Inst. Low Carbon Des., pp. 605–610.

Zuraida, S., Armijaya, H., Margono, R. B., Harmaji, A., & Dewancker, B. J. (2021). A calculation approach of embodied energy, carbon emission and eco-costs on waste recycled composite materials. Journal of Applied Science and Engineering (Taiwan), 25(1). https://doi.org/10.6180/jase.202202_25(1).0011

Zuraida, S., Harmaji, A., Pratiwi, S., Ruitan, X. D. E. A., Anggraini, A. N., Kurniadevi, Y. S., & Dewancker, B. J. (2022). Comparative Study on Mechanical Properties of Waste Composite Materials for Bricks Application | Zuraida | JPSE (Journal of Physical Science and Engineering). Journal of Physical Science and Engineering. https://doi.org/10.17977/um024v7i22022p092




Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats