Properties of Calcined Oebelo Red Soil Modified Fly Ash based Geopolymer
(1) Département des sciences appliquées, Université du Québec à Chicoutimi
(2) Civil Engineering Department, Universitas Nusa Cendana, Kupang, Indonesia
(3) Civil Engineering Department, Universitas Nusa Cendana, Kupang, Indonesia
(4) Civil Engineering Department, Universitas Nusa Cendana, Kupang, Indonesia
(*) Corresponding Author
DOI: https://doi.org/10.25077/jrs.18.3.222-229.2022
Copyright (c) 2022 Andrie Harmaji, Partogi H. Simatupang, Ruslan Ramang, Ari Esclesias Sinaga
Abstract
Keywords
Full Text:
PDFReferences
Adesina, A. (2020). Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges, 1, 100004. https://doi.org/10.1016/j.envc.2020.100004
Amran, M., Al-Fakih, A., Chu, S. H., Fediuk, R., Haruna, S., Azevedo, A., & Vatin, N. (2021). Long-term durability properties of geopolymer concrete: An in-depth review. Case Studies in Construction Materials, 15, e00661. https://doi.org/10.1016/j.cscm.2021.e00661
Aranyasen, S., Srinavin, K., Aksorn, P., & Kusonkhum, W. (2021). View of Comparison of Carbon Dioxide Emissions (CO2-e) Produced Between Ordinary Concrete Production and Geopolymer Concrete for Environmentally Friendly Construction Industry by Using Life Cycle Assessment Methods. KKU Research Journal. 24(1)
Bella, R. A., Bunganaen, W., & Sogen, P. M. (2015). IDENTIFIKASI KERUSAKAN KONSTRUKSI AKIBAT POTENSI PENGEMBANGAN TANAH LEMPUNG EKSPANSIF DI DESA OEBELO. Jurnal Teknik Sipil, 4(2), 195–208. https://doi.org/10.35508/JTS.4.2.195-208
Frigione, M. (2018). Durability problems of concrete structures rehabilitated with FRP. In Eco-efficient Repair and Rehabilitation of Concrete Infrastructures (pp. 147–170). Elsevier Inc. https://doi.org/10.1016/B978-0-08-102181-1.00007-1
Gardner, D., Lark, R., Jefferson, T., & Davies, R. (2018). A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Studies in Construction Materials, 8, 238–247. https://doi.org/10.1016/j.cscm.2018.02.002
Gomes, K. C., Carvalho, M., Diniz, D. de P., Abrantes, R. de C. C., Branco, M. A., & Carvalho Junior, P. R. O. de. (2019). Carbon emissions associated with two types of foundations: CP-II Portland cement-based composite vs. geopolymer concrete. Matéria (Rio de Janeiro), 24(4). https://doi.org/10.1590/s1517-707620190004.0850
Hanein, T., Thienel, K. C., Zunino, F., Marsh, A. T. M., Maier, M., Wang, B., Canut, M., Juenger, M. C. G., ben Haha, M., Avet, F., Parashar, A., Al-Jaberi, L. A., Almenares-Reyes, R. S., Alujas-Diaz, A., Scrivener, K. L., Bernal, S. A., Provis, J. L., Sui, T., Bishnoi, S., & Martirena-Hernández, F. (2022). Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL. In Materials and Structures/Materiaux et Constructions (Vol. 55, Issue 1, pp. 1–29). Springer Science and Business Media B.V. https://doi.org/10.1617/s11527-021-01807-6
Harmaji, A., & Zuraida, S. (2019). Green Construction Material: Polyethylene Waste Reinforce Concrete for Panel Application. International Journal of Built Environment and Scientific Research, 3(1), 1. https://doi.org/10.24853/ijbesr.3.1.1-6
Harmaji, A. (2019). Pengaruh Penambahan Corn Cob Ash dan Bagasse Ash terhadap Setting Time dan Kuat Tekan Material Berbasis Semen. JOURNAL OF APPLIED SCIENCE (JAPPS), 1(1), 001–006. https://doi.org/10.36870/japps.v1i1.1
Harmaji, A., & Sunendar, B. (2016). Utilization of fly ash, red mud, and electric arc furnace dust slag for geopolymer. In Materials Science Forum (Vol. 841). https://doi.org/10.4028/www.scientific.net/MSF.841.157
Kaczyńska, K., Kaczyński, K., & Pełka, P. (2021). Calcination of clay raw materials in a fluidized bed. Materials, 14(14). https://doi.org/10.3390/ma14143989
Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. M. (2020). Advances in alkali-activation of clay minerals. In Cement and Concrete Research (Vol. 132, p. 106050). Elsevier Ltd. https://doi.org/10.1016/j.cemconres.2020.106050
Khater, H. M., & el Naggar, A. (2020). Combination between organic polymer and geopolymer for production of eco-friendly metakaolin composite. Journal of the Australian Ceramic Society, 56(2), 599–608. https://doi.org/10.1007/s41779-019-00371-1
Kotop, M. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., & Binyahya, A. S. (2021). Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Engineering Journal, 12(4), 3641–3647. https://doi.org/10.1016/j.asej.2021.04.022
Latawiec, R., Woyciechowski, P., & Kowalski, K. (2018). Sustainable Concrete Performance—CO2-Emission. Environments, 5(2), 27. https://doi.org/10.3390/environments5020027
Mohammed, A. A., Ahmed, H. U., & Mosavi, A. (2021). Survey of Mechanical Properties of Geopolymer Concrete: A Comprehensive Review and Data Analysis. Materials, 14(16), 4690. https://doi.org/10.3390/ma14164690
Muhammad, N., Baharom, S., Ghazali, N. A. M., & Alias, N. A. (2019). Effect of Heat Curing Temperatures on Fly Ash-Based Geopolymer Concrete. International Journal of Engineering & Technology, 8(1.2), 15–19. https://doi.org/10.14419/IJET.V8I1.2.24866
Neupane, K. (2018). High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials, 7(2), 15. https://doi.org/10.11648/j.am.20180702.11
Poudyal, L., & Adhikari, K. (2021). Environmental sustainability in cement industry: An integrated approach for green and economical cement production. In Resources, Environment and Sustainability (Vol. 4, p. 100024). Elsevier B.V. https://doi.org/10.1016/j.resenv.2021.100024
Reeb, C., Pierlot, C., Davy, C., & Lambertin, D. (2021). Incorporation of organic liquids into geopolymer materials - A review of processing, properties and applications. In Ceramics International (Vol. 47, Issue 6, pp. 7369–7385). Elsevier Ltd. https://doi.org/10.1016/j.ceramint.2020.11.239
Simatupang, P.H., Harmaji, A., Anggraini, A.N., Pane, I., Sunendar, B., & Imran I. (2015). Utilization of industrial waste in indonesiaas filler for low and high calcium fly ash based geopolymer. Surabaya: The 2nd International Conference on Material and Metallurgical Technology 2015 (ICOMMET 2015).
Singh, N. (2018). Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals, 8(7), 299. https://doi.org/10.3390/min8070299
Yadav, M. (2021). FLY ASH BASED GEOPOLYMER BINDERS: A SUSTAINABLE AND GREEN CEMENT. SPAST Abstracts, 1(01).
Zailan, S. N., Mahmed, N., Abdullah, M. M. A. B., Rahim, S. Z. A., Halin, D. S. C., Sandu, A. V., Vizureanu, P., & Yahya, Z. (2022). Potential Applications of Geopolymer Cement-Based Composite as Self-Cleaning Coating: A Review. Coatings, 12(2), 133. https://doi.org/10.3390/coatings12020133
Zuraida, S., Primasetra, A., Margono, R. B., & Harmaji, A. (2020). The application of plastic composite panel for prefabricated low costs housing in Indonesia: A green construction design proposal,” J. Asian Inst. Low Carbon Des., pp. 605–610.
Zuraida, S., Armijaya, H., Margono, R. B., Harmaji, A., & Dewancker, B. J. (2021). A calculation approach of embodied energy, carbon emission and eco-costs on waste recycled composite materials. Journal of Applied Science and Engineering (Taiwan), 25(1). https://doi.org/10.6180/jase.202202_25(1).0011
Zuraida, S., Harmaji, A., Pratiwi, S., Ruitan, X. D. E. A., Anggraini, A. N., Kurniadevi, Y. S., & Dewancker, B. J. (2022). Comparative Study on Mechanical Properties of Waste Composite Materials for Bricks Application | Zuraida | JPSE (Journal of Physical Science and Engineering). Journal of Physical Science and Engineering. https://doi.org/10.17977/um024v7i22022p092
Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats