Perilaku Lentur Struktur Balok Beton Bertulang Dengan Korosi Tulangan Hingga 50%

Pinta Astuti(1*)

(1) Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta. Bantul, Yogyakarta
(*) Corresponding Author

DOI: https://doi.org/10.25077/jrs.19.1.14-21.2023

Copyright (c) 2023 Pinta Astuti

Abstract


Korosi tulangan pada struktur beton merupakan salah satu penyebab kerusakan yang paling berdampak di dunia. Oleh karena itu, banyak peneliti terdahulu yang telah mencari unknown mechanism terkait ptoses terjadinya korosi, efek kerusakan struktur akibat korosi terhadap kapasitas dan kinerjanya, dan metode intervensi atau perbaikan akibat kerusakan tersebut. Tujuan penelitian ini adalah untuk mengetahui perilaku lentur pada struktur balok beton bertulang dengan tingkat korosi tulangan longitudinal hingga 50%.   Kuat tekan pada material beton tersebut adalah 30MPa, tegangan leleh pada tulangan utama dan tulangan samping adalah 420 MPa dan 280 MPa untuk tulangan sengkang. Dua jenis pembebanan yaitu beban titik dan beban merata yang didesain berdasarkan SNI 2847-2019 diaplikasikan pada permukaan atas struktur balok. Analisis penampang balok dilakukan dengan program Response-2000. Dari hasil penelitian tersebut didapatkan bahwa level korosi 40% merupakan tingkat kritis dan kinerja struktur balok menurun secara signifikan akibat bebam merata yang bekerja dan tingkat korosi 30% merupakan tingkat kritis akibat beban titik yang dapat diindikasi dari nilai dekfleksi, momen kurvatur, pola retak, dan lebar retak.

Keywords


korosi; perilaku lentur balok; defleksi; momen kurvatur; pola retak

Full Text:

PDF

References


Afriansya, R., Astuti, P., Ratnadewati, V. S., Randisyah, J., Ramadhona, T. Y., & Anisa, E. A. (2021). Investigation Of Setting Time And Flowability Of Geopolymer Mortar Using Local Industry And Agriculture Waste As Precursor In Indonesia. International Journal of GEOMATE, 21(87). https://doi.org/10.21660/2021.87.j2325

Astuti, P., Kamarulzaman, K., & Hamada, H. (2021). Non-Destructive Investigation of A 44-Year-Old RC Structure Exposed to Actual Marine Tidal Environments Using Electrochemical Methods. International Journal of Integrated Engineering, 13(3). https://doi.org/10.30880/ijie.2021.13.03.018

Astuti, P., Kamarulzaman, K., Rafdinal, R. S., Hamada, H., Sagawa, Y., & Yamamoto, D. (2020). Influence of Rust Removal Process on The Effectiveness of Sacrificial Anode Cathodic Protection in Repair Concrete. IOP Conference Series: Materials Science and Engineering, 849(1), 012088. https://doi.org/10.1088/1757-899X/849/1/012088

Astuti, P., Rafdinal, R. S., Hamada, H., Sagawa, Y., Yamamoto, D., & Kamarulzaman, K. (2019). Effectiveness of Rusted and Non-Rusted Reinforcing Bar Protected by Sacrificial Anode Cathodic Protection in Repaired Patch Concrete. IOP Conference Series: Earth and Environmental Science, 366(1). https://doi.org/10.1088/1755-1315/366/1/012013

Astuti, P., Rafdinal, R. S., Mahasiripan, A., Hamada, H., Sagawa, Y., & Yamamoto, D. (2018). Potential Development Of Sacrificial Anode Cathodic Protection Applied For Severely Damaged Rc Beams Aged 44 Years. Thailand Concrete Association, 24–31.

el Maaddawy, T., & Soudki, K. (2007). A model for prediction of time from corrosion initiation to corrosion cracking. Cement and Concrete Composites, 29(3), 168–175. https://doi.org/10.1016/j.cemconcomp.2006.11.004

Khan, M. U., Ahmad, S., & Al-Gahtani, H. J. (2017). Chloride-Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. International Journal of Corrosion, 2017, 1–9. https://doi.org/10.1155/2017/5819202

Polder, R. B., Leegwater, G., Worm, D., & Courage, W. (2014). Service life and life cycle cost modelling of cathodic protection systems for concrete structures. Cement and Concrete Composites, 47, 69–74. https://doi.org/10.1016/j.cemconcomp.2013.05.004

Poupard, O., L’Hostis, V., Catinaud, S., & Petre-Lazar, I. (2006). Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment. Cement and Concrete Research, 36(3), 504–520. https://doi.org/10.1016/j.cemconres.2005.11.004

Steffens, A., Dinkler, D., & Ahrens, H. (2002). Modeling carbonation for corrosion risk prediction of concrete structures. Cement and Concrete Research, 32(6), 935–941. https://doi.org/10.1016/S0008-8846(02)00728-7

Yuan, Y., & Ji, Y. (2009). Modeling corroded section configuration of steel bar in concrete structure. Construction and Building Materials, 23(6), 2461–2466. https://doi.org/10.1016/j.conbuildmat.2008.09.026

Zhang, X., Zhang, Y., Liu, B., Liu, B., Wu, W., & Yang, C. (2021). Corrosion-induced spalling of concrete cover and its effects on shear strength of RC beams. Engineering Failure Analysis, 127, 105538. https://doi.org/10.1016/j.engfailanal.2021.105538

Zhao, Y., Karimi, A. R., Wong, H. S., Hu, B., Buenfeld, N. R., & Jin, W. (2011). Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer. Corrosion Science, 53(9), 2803–2814. https://doi.org/10.1016/j.corsci.2011.05.017




Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats