Studi Kasus Pembuatan Lengkung Idf Dan Perkiraan Hujan Rencana Di Kota Bekasi Dan Cikarang Berdasarkan Data Non-Stasioner

Segel Ginting(1*)

(1) Balai Teknik Irigasi, Direktorat Irigasi dan Rawa, Kementerian PUPR, Indonesia
(*) Corresponding Author

DOI: https://doi.org/10.25077/jrs.18.2.117-132.2022

Copyright (c) 2022 Segel Ginting

Abstract


Perubahan wilayah dari perdesaan menjadi perkotaan menyebabkan terjadinya perubahan iklim. Iklim yang berubah tersebut menyebabkan terjadinyan peningkatan hujan ekstrim. Perubahan catatan data hujan ektrim, menyebabkan analisis frekuensi data tersebut menjadi tidak valid karena kondisi data tidak stasioner. Oleh karena hal tersebut, maka dilakukan adaptasi pembuatan lengkung IDF dan hujan rencana menggunakan data non stasioner. Contoh kasus yang digunakan adalah di Kota Bekasi dan Cikarang, dimana kedua kota tersebut telah berubah menjadi wilayah perkotaan, sehingga karaketristik iklimnya mengalami perubahan. Metode pembuatan lengkung IDF dengan persamaan Bell dan penentuan hujan rencana dengan menggunakan distribusi generalized extreme value (GEV) berdasarkan empat skenario. Skenario pertama (GEV-0) menggunakan asumsi parameter lokasi (mean) dan skala (standar deviasi) tetap (stasioner), skenario kedua (GEV-1) menggunakan parameter lokasi tidak tetap (non-stasioner) sementara parameter skala tetap, skenario ketiga (GEV-2) menggunakan parameter lokasi dan parameter skala  tidak tetap, sedangkan skenario keempat (GEV-3) sama dengan skenario GEV-2 namun prediksi parameter lokasi dan skalanya berdasakan data hujan tahunan. Lengkung IDF dan hujan rencana berdasarkan parameter non stasioner memberikan hasil peningkatan intensitas hujan dan hujan rencana. Kondisi demikian membuat perencanaan infrastruktur seperti drainase perkotaan harus adaptif untuk mengantsipasi terjadinya genangan yang lebih sering dimasa mendatang.

Keywords


Lengkung IDF; hujan rencana; generalized extreme value (GEV); non-stasioner

Full Text:

PDF

References


Asquith, W. H., & Roussel, M. C. (2004). Atlas of depth-duration frequency of precipitation annual maxima for Texas. Texas Department of Transportation.

Bell, F. C. (1969). Generalized rainfall-duration-frequency relationships. Journal of the Hydraulics Division, 95(1), 311–328.

Chen, P. C., Wang, Y. H., You, G. J. Y., & Wei, C. C. (2017). Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan. Journal of Hydrology, 545, 197–211. https://doi.org/10.1016/j.jhydrol.2016.12.001

Emori, S., & Brown, S. J. (2005). Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophysical Research Letters, 32(17), 1–5. https://doi.org/10.1029/2005GL023272

Gilroy, K. L., & McCuen, R. H. (2012). A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 414, 40–48.

Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. A. R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., & Zhai, P. (2013). Observations: Atmosphere and surface. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Vol. 9781107057). https://doi.org/10.1017/CBO9781107415324.008

Khaliq, M. N., Ouarda, T. B. M. J., Ondo, J. C., Gachon, P., & Bobée, B. (2006). Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. Journal of Hydrology, 329(3–4), 534–552. https://doi.org/10.1016/j.jhydrol.2006.03.004

Marsalek, J., & Watt, W. E. (1984). Design storms for urban drainage design. Canadian Journal of Civil Engineering, 11(3), 574–584.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., & Stouffer, R. J. (2008). Climate change: Stationarity is dead: Whither water management? Science, 319(5863), 573–574. https://doi.org/10.1126/science.1151915

Nwaogazie, I. L., & Sam, M. G. (2020). A Review Study on Stationary and Non-Stationary IDF Models Used in Rainfall Data Analysis around the World from 1951-2020. International Journal of Environment and Climate Change, December, 465–482. https://doi.org/10.9734/ijecc/2020/v10i1230322

Oruc, S. (2021). Non-stationary investigation of extreme rainfall. Civil Engineering Journal (Iran), 7(9), 1620–1633. https://doi.org/10.28991/cej-2021-03091748

Overeem, A., Buishand, A., & Holleman, I. (2008). Rainfall depth-duration-frequency curves and their uncertainties. Journal of Hydrology, 348(1–2), 124–134. https://doi.org/10.1016/j.jhydrol.2007.09.044

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc.

Rao, A. R., & Hamed, K. H. (2019). Flood frequency analysis. CRC press.

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953

Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., & Krajewski, W. F. (2009). Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Advances in Water Resources, 32(8), 1255–1266.

Wobus, C., Lawson, M., Jones, R., Smith, J., & Martinich, J. (2014). Estimating monetary damages from flooding in the United States under a changing climate. Journal of Flood Risk Management, 7(3), 217–229. https://doi.org/10.1111/jfr3.12043

Xiong, L., Du, T., Xu, C. Y., Guo, S., Jiang, C., & Gippel, C. J. (2015). Non-stationary annual maximum flood frequency analysis using the norming constants method to consider non-stationarity in the annual daily flow series. Water Resources Management, 29(10), 3615–3633. https://doi.org/10.1007/s11269-015-1019-6

Yazdanfar, Z., & Sharma, A. (2015). Urban drainage system planning and design - Challenges with climate change and urbanization: A review. Water Science and Technology, 72(2), 165–179. https://doi.org/10.2166/wst.2015.207

Zhou, Q. (2014). A review of sustainable urban drainage systems considering the climate change and urbanization impacts. Water (Switzerland), 6(4), 976–992. https://doi.org/10.3390/w6040976




Jurnal Rekayasa Sipil (JRS)-Universitas Andalas (Unand). ISSN: 1858-2133 (print) & 2477-3484 (online)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
View JRS-Unand Stats